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Abstract
In order to scale automated security testing, we must first solve the
reachability gap. Existing approaches to test specific features of a
software system always assume some way of interacting with the
system. For instance, the most popular approach, fuzzing, either
assumes command line access, network access, an execution to
amplify, or so-called fuzz drivers to send generated inputs to the
system’s process or its components. Yet, scaling security testing
requires somuchmore than sending inputs. To test a specific feature,
we might need to enable specific configuration options in specific
files, to set up a specific runtime environment, to write some source
code to exchange messages with the system over the network, or
to issue system calls to the OS kernel (e.g., to test a device driver).
We call the challenge of producing both the environment and input
required to trigger specific internal functionality in a system as the
reachability gap.

In this paper, we investigate the use of Large Language Model
(LLM) agents to address the reachability gap in automated software
testing. We introduce a novel end-to-end methodology that com-
bines LLM-driven execution with invivo fuzzing, requiring only
that the target software is installed and runnable—no manual har-
nesses or configuration. First, we evaluate whether an LLM agent
can autonomously drive real-world programs into deep internal
states. Then, we study the effectiveness of our full methodology:
using invivo fuzzing to amplify executions produced by the agent.
This approach results in increased code coverage and leads to the
discovery of a previously unknown vulnerability in a widely used
open source project.
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Figure 1: Approaches to automated security testing.

1 Introduction
Fuzzing is one of the most successful techniques for discovering se-
curity vulnerabilities in complex software systems. By executing a
program with randomly mutated inputs and monitoring for crashes
or anomalies, fuzzers can uncover unexpected behaviors that might
lead to exploitable bugs. Over the past decade, the fuzzing ecosys-
tem hasmatured significantly, with techniques like coverage-guided
fuzzing demonstrating their effectiveness in discovering deep bugs
across a wide range of programs [20]. Building on this foundation,
large-scale fuzzing infrastructures have emerged to continuously
test software at scale. For example, Google’s ClusterFuzz system,
through its OSS-Fuzz instance [5], continuously tests hundreds of
popular projects, and has reported tens of thousands of bugs.

Figure 1.(a-c) shows the three most prevalent means of security
testing. The first fuzzer that popularized greybox fuzzing was AFL,
a system-level greybox fuzzer for command line utilities (Fig. 1.a).
The command line provides a standardized way of interacting with
command line utilities via files or pipes (e.g., stdin). For instance,
when testing a PNG-image processor, AFL would start with seed
corpus of PNG-files, mutate those to generate new files, execute
them, and add those that increase code coverage to the seed corpus.

Today, themostwidely used approach is unit-level fuzzing (Fig. 1.b),
where a target component or library is isolated from its host pro-
gram(s) and connected to a fuzzer via a fuzz driver that exposes
the component to the fuzzer, e.g., via a command line interface or a
fuzzer-generic function. Writing a good fuzz driver often requires
a solid understanding of the codebase in order to determine how
the library project or software component is meant to be used, and
what environmental conditions must be satisfied for the code to
execute meaningfully. Usually, writing these fuzz drivers is manual
and error-prone. To automate the manual effort, it is possible to

https://doi.org/10.1145/3744916.3773116
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744916.3773116


ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Sapia and Böhme

generate fuzz drivers [12]. The existing automated methods typi-
cally assemble sequences of calls to the library API based on their
observed usage in real-world programs [2, 12]. However, these
approaches are primarily syntactic: they do not always infer mean-
ingful interactions with the system and reports many false positives
[8]. Moreover, while fuzz driver generation is designed to automate
unit-level fuzzing, it does not work well for system-level fuzzing
which requires first configuring and reproducing the broader exe-
cution context in which specific target features are triggered.

An emerging direction that sidesteps the need for fuzz drivers is
invivo fuzzing [8] (Fig. 1.c) which amplifies actual, externally gener-
ated system executions at so-called amplifier points. Whenever an
execution reaches a designated software feature to test, the current
system state is forked and coverage-guided, function-level fuzzing
is run on those shadow executions. Crucially, invivo fuzzing reuses
a contextually valid program state that would be difficult to recreate
manually through a traditional fuzz driver. Although originally
applied to libraries in command-line applications, invivo fuzzing
naturally extends to programs that process input through other
channels, such as network services—where internal logic can be
difficult to access due to the lack of clean APIs and reliance on
external configuration and runtime conditions.

Yet, the invivo approach surfaces a key challenge: how do we
obtain the system executions to amplify? To interact with a specific
feature of a software, wemight need to enable specific configuration
options, to set up a specific runtime environment (e.g. creating
a file that the program expects), and to set up a specific means
to interact with the system. Moreover, different systems require
different modes of interaction. For example, interacting with a
kernel filesystem drivermay involvemounting a volume and issuing
system calls via a C program that needs to be written and compiled,
while testing an HTTP server might require placing specific files
in the document root folder and a testing client that sends and
receives appropriate network requests.

We call reachability gap the challenge of generating an initial
setup to interact with an arbitrary system and generating an execu-
tion to exercise a specific feature. Addressing the reachability gap
requires a higher-level, semantic view of the program. That is, an
understanding of how to configure the system to potentially enable
the target feature and how to interact with the system as an end
user or another system would.

Even in settings like the 2025 AIxCC competition [6], which is
explicitly designed to advance fully automated vulnerability discov-
ery, participants are provided with manually written fuzz drivers
[7]. These drivers effectively bypass the key challenge of figuring
out how to configure and interact with a system to reach interesting
components in the first place. This design choice underscores a cen-
tral limitation in current automated approaches: despite advances
in automated software testing, the reachability gap remains difficult
enough that it is manually abstracted away, even in competitions
focused on automation. Ideally, for an automatic security testing
tool to scale to the vast heterogeneity of software systems, the only
assumption should be that the system is installed and runnable, and
perhaps that the source code is available. Nothing more.

In this paper, we propose amethodology for fully automated, end-
to-end security testing that integrates (i) a custom LLM-agent to
setup the interaction with a given software system and to generate

an execution to exercise a given feature in that system with (ii) an
invivo fuzzer to amplify the LLM-generated execution once the
feature is reached.

Our evaluation demonstrates the effectiveness of this approach.
In the first experiment, we assess the agent’s capability to reach a
specific feature for five (5) real-world software projects, spanning
user-space servers and kernel drivers. We compare two modes of
interaction of the agent with the target software: full debugger
access, which offers flexibility but limited guidance, and code cov-
erage feedback, which constrains the agent’s view but provides
a clearer signal of progress. Across both modes, the agent is able
to successfully trigger the target function in the majority of the
cases (56%). In the second experiment, we assess the effectiveness
of the end-to-end methodology for four (4) programs: for 20 target
functions in each, we task the LLM agent with reaching them and,
for the cases where the agent succeeds, apply invivo fuzzing from
those runtime states. This results in increased code coverage on
all programs with respect to the OSS-fuzz baseline, and lead to the
discovery of a previously unknown vulnerability.
In summary, the contributions of this paper are the following:
• We characterize the reachability gap as a core obstacle pre-
venting the fully automated security testing of an arbitrary
software system, by highlighting the difficulty of triggering
arbitrary points in real-world codebases.
• We investigate the use of a Large Language Model (LLM)
agent to address this challenge, evaluating its ability to setup
the necessary environment and to generate concrete executions
that drive programs into target internal states.
• We propose a novel, end-to-end methodology that combines
LLM-generated executions with invivo fuzzing. By allowing the
LLM to generate interactions and then amplifying successful
executions, we demonstrate a practical path toward scaling
automated software testing. Our results show promising out-
comes: the agent achieves target reachability in the majority of
cases, coverage increases across tested programs, and our auto-
mated approach discovers a previously unknown vulnerability
in a popular open source project.

Data availability. We publish our tool and data at: https://github.
com/GPSapia/ReachabilityAgent_ICSE

2 Illustrating the Reachability Gap
In many cases, a target component to be tested is buried inside
a larger application. The component is often not cleanly exposed
through an API, at all. The program may not be structured as a
library, and the only way to trigger the target code is through a
chain of runtime interactions: configuring the software in a certain
way, preparing auxiliary files, starting background services, and
sending inputs over a network or IPC channel. In the general case
(cf. Figure 1.d), it is not even clear how to begin testing, because
the usual assumption of direct access to the target functionality no
longer holds.

Our motivating example shown in Figure 2 may help to illustrate
the complexity that needs to be solved to overcome this reachability
challenge. Suppose, we want to test the Server Side Includes (SSI)
module in nginx. The nginx (“engine x") server is an HTTP web
server, reverse proxy, content cache, load balancer, TCP/UDP proxy

https://github.com/GPSapia/ReachabilityAgent_ICSE
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server, and mail proxy server. SSI is a feature that allows HTML
files to include dynamic content by inserting special directives
such as <!--#include file="..."-->. When a request for such
a file is received, nginx parses the HTML, recognizes the directive,
and executes the corresponding logic to include or evaluate the
requested content.

How do we test the SSI feature in nginx?

Existing approaches. The nginx server does not facilitate test-
ing the SSI feature via the command line and it is difficult to isolate
the SSI component and write a fuzz driver for it. The SSI handling
code is not exposed as a library or as a clean API. It is embedded
within the larger nginx binary. Extracting the relevant code and
wrapping it in a standalone fuzz driver would require recreating
large parts of nginx’s internal execution context, including request
parsing, configuration resolution, and file handling. This perfectly
illustrates the reachability gap in practice: the target functionality
is hidden behind environmental prerequisites that are difficult to
discover and fulfill without human insight.

Configuring and Interacting with nginx. Reaching the code
implementing the SSI feature in practice via the system-level in-
terfaces provided by nginx requires several setup steps (cf. Fig. 2).
First, SSI is not enabled by default. It must be explicitly turned on in
the nginx configuration file. One must locate the configuration file
in the corresponding folder, localize the specific line in which to
add four very specific lines. Second, one must place a valid HTML
file containing the correct SSI syntax in the correct server web root
directory. Third, one must execute the correct command to launch
nginx with the updated configuration and serving the target file
path. Finally, one must issue an HTTP request to access that file
and trigger the SSI parsing logic. While it is possible to use the wget
utility to request that website, our LLM agent would write, compile,
and execute a C file that would open a connection, construct a valid
HTTP message, and issue the HTTP request to the correct IP.

While these tasks might be more or less easy for a human who
understands the goal, they are practically impossible to tackle for a
fully automated system that lacks not only prior knowledge of the
specific functionality to exercise, but also an understanding of the
tested software and how to interact with it. In the remainder of the
paper, we explore the use of LLM agents as a potential means to
address the reachability gap.

3 Background
In this section, we review key concepts that underpin our work. We
first provide an overview of the LLM-based software engineering
agents, that our approach builds upon. Then, we describe the invivo
fuzzing technique, which is the second component of our proposed
automated software testing methodology.

3.1 LLM Agents
LLM agents are systems that place a large language model in a
feedback-driven loop, allowing it to use tools, observe outcomes,
and iteratively adapt its behavior. At each step, the model generates
an action, which is executed in the environment. The result of
the action is then fed back into the next model prompt, enabling

Figure 2: Sequence of actions required to unlock SSI parsing
code in nginx, starting from the only assumption that nginx
is installed with the default configuration

multi-step interaction. Recent work has applied such agents to
software engineering tasks, such as debugging, code navigation, and
automated patching, and extended them to security domains like
capture-the-flag (CTF) solving and vulnerability discovery through
interactive system-level tools.

A notable example is SWE-agent [26], which explores how to
design better interfaces to enable LLMs to perform software engi-
neering tasks. The authors introduce the notion of Agent-Computer
Interface (ACI), treating LLMs as users that require structured,
machine-facing interfaces to interact effectively with codebases.
SWE-agent implements this concept by exposing a small set of
commands for file navigation (find_file, search_file, search_dir),
file viewing (open, goto, scroll_up, scroll_down), and editing (edit,
create). The system is then evaluated on the SWE-bench benchmark
[14], which consists of real software engineering tasks extracted
from GitHub issues across 12 popular Python repositories.

Building on SWE-agent, EnIGMA [1] extends the agent frame-
work to tackle cybersecurity tasks, by equipping it with access
to interactive tools like gdb and remote server connections (via
pwntools), enabling dynamic analysis and exploitation workflows.
These tools are exposed through high-level commands that allow
the agent to, for example, disassemble or decompile functions, start
or manage debugging sessions, and interact with remote services.
To address the verbose outputs typical of security tooling, EnIGMA
also includes an automatic summarization layer that condenses
overly long command results. The system is evaluated on a dataset
of 390 CTF challenges, demonstrating that integrating domain-
specific tools significantly enhances agent performance in security-
relevant tasks.

While these agents have demonstrated relatively good perfor-
mance on software engineering and CTF-style tasks, it remains
unclear how well they generalize to the type of deep, system-level
interaction required to overcome the reachability gap. In partic-
ular, they have not been evaluated in settings where the agent
must autonomously configure, interact with, and trigger specific
functionality in complex real-world software. This motivates our
investigation.
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3.2 Invivo Fuzzing
Invivo fuzzing [8] is a technique designed to enable fuzzing without
the need for dedicated fuzz drivers. Rather than synthesizing inputs
from scratch, it amplifies real program executions by fuzzing inputs
passed to selected amplifier points (APs)—functions where user
input is parsed.

APs must be specified by the user, either manually or through
automated discovery techniques. In their prototype, the authors
use CodeQL to identify likely parsing functions, but they note that
APs can also be chosen based on expert knowledge of the codebase
under test.

The invivo fuzzer embeds a forkserver into the program ahead
of time and activates it whenever execution reaches a designated
AP. From there, it mutates the input parameters passed to that
function and spawns child processes via the forkserver to explore
variant executions. This allows efficient in-place fuzzing from a
fully initialized program state.

To reduce false positives and maintain valid program behavior,
amplification constraints can also be associated with each AP. These
constraints are logical preconditions on the AP’s arguments that
must be preserved while fuzzing (e.g. "the size of the input buffer
buf must be less than or equal 10").

In the methodology described next, we propose to use invivo
fuzzing to amplify executions generated by the LLM agent.

4 An LLM-based Approach to Addressing the
Reachability Challenge

In this section, we present our end-to-end methodology for au-
tomated software testing, which combines LLM-driven execution
discovery with invivo fuzzing to explore deep internal program
behavior. The approach is designed to operate from minimal as-
sumptions (i.e., the target software is installed and runnable and
the source code is available), without requiring human-written
harnesses or configuration.

We begin by outlining the overall methodology (Section 4.1),
then describe the extensions we introduce to existing LLM agents
to support this workflow (Section 4.2), as well as the criteria we use
to select amplification point for invivo fuzzing (Section 4.3).

4.1 Automated Testing Methodology
As discussed above, the reachability bottleneck remains a critical
and often overlooked obstacle towards automated software testing:
without the ability to drive programs into meaningful internal
states, no amount of fuzzing will surface deep or complex bugs.

At the same time, while Large Language Models (LLMs) have
recently been proposed as tools for automated vulnerability dis-
covery, early results suggest that a naïve "here’s the code, find the
bug" approach is ineffective [19, 21, 22]. Vulnerability discovery is
not only technically demanding, but also open-ended in a way that
often overwhelms even strong language models.

Instead, we hypothesize that the reachability problem presents
a more tractable and productive application for LLMs. It occupies
a middle ground: on one hand, it requires a higher-level under-
standing of program behavior, including how to manipulate inputs,
configurations, and system state. On the other, it is constrained
and concrete, like triggering a specific function, making it a more

bounded and achievable task. If an agent reaches the desired point
in the code, it can then hand off to a fuzzing engine to explore
behavior from that point forward. The methodology we propose,
described in Algorithm 1, is built on this hypothesis.

Algorithm 1 End-to-End Testing Methodology

Require: Runnable program 𝑃 ; target functions F
1: globalCovFuncs← ∅
2: for 𝑓 ∈ F do
3: if 𝑓 ∈ globalCovFuncs then
4: continue
5: end if
6: a← ∅
7: coveredFuncs← ∅
8: stackTrace← callGraphAnalysis(𝑓 )
9: agent← LLMAgent(goal=𝑓 , trace=stackTrace, budget=$10)
10: while 𝑓 ∉ coveredFuncs and budget not exhausted do
11: 𝑎𝑡 ← agent.nextAction
12: 𝑎 ← 𝑎 ∪ {𝑎𝑡 }
13: if interactWithTarget(𝑎𝑡 ) then
14: coveredFuncs← ∅
15: Execute 𝑎𝑡 in 𝑃 ’s environment
16: coveredFuncs← GetNewlyCoveredFuncs(𝑃 )
17: else
18: Execute 𝑎𝑡 in 𝑃 ’s environment
19: end if
20: end while
21: if 𝑓 ∈ coveredFuncs then
22: globalCovFuncs← globalCovFuncs ∪ coveredFuncs
23: trace← ReproduceExecutionTrajectory(𝑃 , 𝑎1:𝑡 )
24: ampPoint← IdentifyInputSyscall(trace)
25: InVivoFuzz(𝑃 , ampPoint)
26: end if
27: end for

Algorithm 1 requires as input a program 𝑃 and a set F of target
functions in 𝑃 that we want to trigger at runtime. While many
criteria can be used to do so, in our experiments we select functions
based on their complexity: the intuition is that the more complex
functions are more likely to contain bugs [16], while the functions
with the highest cumulative complexity (i.e. the accumulated com-
plexity of all the functions that can be reached starting from the
target function) allow to cover a larger area of code with one exe-
cution [11].

For each function, we statically compute the stack traces leading
to it: this is done with an LLVM pass at compile time. This informa-
tion, plus the target function and the path of the target codebase
on the machine, are given to the LLM in the initial prompt (Lines
8–9). The possible actions the agent can perform at each step are
described in Section 4.2.

If the agent action is a direct interaction with the target program
(Lines 13–16), we save the list of functions that were executed.
Notice that, at Line 14, before actually executing the agent action
in the environment, we clean the coverage information collected
so far. The idea here is that we want to show the agent only the
effects of the last interaction, in order to avoid overwhelming it
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with every function that has been executed since the beginning
of the trajectory. The agent execution continues until either the
target was reached, or the LLM API budget of $10 was exhausted
(Lines 10–20).

If the function was reached, we reproduce the trajectory, iden-
tify the amplification points for invivo fuzzing (using the criteria
described in Section 4.3), and start the fuzzing campaign.

Finally, we keep track of the functions that the agent was able
to reach across all successful trajectories (Line 1), so that, in case
one trajectory reached more than one target function (e.g. due to
overlapping execution flows), we can consider all of them as solved.

4.2 Agent Design
Our agent is built on top of SWE-agent, described in Section 3.1,
which we adapt for our software testing use case by introducing
extensions described below. First, the agent operates in a fully iso-
lated environment: a QEMU virtual machine that hosts the target
program, previously compiled with coverage instrumentation en-
abled. This setting provides a realistic and flexible testbed, enabling
interaction with userspace programs, services, and kernel-level
components. The agent’s task is to write a C program that, when
compiled and executed in the guest machine, drives the target pro-
gram into a state where a designated function is triggered.

Table 1: ACI commands added on top of SWE-agent

Category Command Documentation

Coverage
getCoverageByFunc coverage data for one function, with com-

parison operators
getWholeCoverage code coverage from latest interaction

Code Browser
search_func_def return code location where a function is

defined
search_struct_def return code location where a struct is

defined
search_macro_def return code location where a macro is

defined

Editing

ins_lines_in_poc Inserts code into C PoC file.
ins_lines_in_non_poc Inserts code into non-PoC file
del_lines_from_poc Deletes lines from PoC file.
del_lines_from_non_poc Deletes lines from non-PoC file.

QEMU
push_non_poc Pushes non-PoC files to QEMU target.
compile_PoC Compiles PoC code for execution.
execOnTargetMachine Executes PoC on QEMU-based target.

4.2.1 Code Browsing Support. We equip the agent with a code
browsing capability via a custom libTooling pass that statically an-
alyzes the target codebase at build time. This pass generates an in-
dex of relevant source-level constructs—function definitions, struc-
ture definitions, and macro definitions—which the agent can query
during execution using the commands search_function_definition,
search_structure_definition, and search_macro_definition.

4.2.2 Execution Modes. The agent can be launched both in cover-
age mode and in gdb mode. In coverage mode, after each attempt at
interacting with the target, the agent receives a list of the functions

that were executed. If the agent wants to inspect a specific func-
tion more closely, it can request fine-grained coverage information,
which includes the values of comparison operators in branch con-
dition. The commands available to the agent to obtain coverage
information are getWholeCoverage and getCoverageByFunc.

In GDB mode, the agent has access to the debugger and is free to
monitor, explore, and interfere with an ongoing program execution
however it chooses. This setup removes structured feedback and
instead offers a lower-level, open-ended interface to the running
system. For this functionality, we extend the existing implemen-
tation of EnIGMA to support asynchronous breakpoint usage. In
contrast to EnIGMA which, to the best of our knowledge, only
allowed breakpoints to be set before program execution began,
our interface allows the agent to interrupt a running binary, in-
sert or remove breakpoints, and resume execution. This supports
more realistic workflows, such as monitoring the behavior of long-
running processes or reacting to runtime conditions discovered
during execution.

4.2.3 Improved Interfaces. Finally, we introduced several improve-
ments to the agent-computer interface that address limitations we
observed during our experiments. First, we refined the code editing
interface by splitting the original edit_file command into two
separate actions: insert new content and delete previous contents.
This change significantly reduced the chance of incorrect edits and
aligns with findings in prior works that a carefully designed ACI
is critical to improving LLM performance. Second, we relaxed the
viewing constraints for the agent-generated C program that is used
to interact with the target software. Unlike standard file visualiza-
tion—by default limited to 50 lines—files authored by the agent are
returned in full. This decision was motivated by the observation
that partial views often led to subtle mistakes such as mismatched
braces or incomplete function definitions, resulting in frequent
compilation failures.

4.3 Execution Amplification
Once the agent succeeds in reaching a target function, we apply
invivo fuzzing to amplify the resulting execution. This allows us to
explore the local behavioral space around the discovered state by
mutating input in-place, under realistic program conditions.

In the original invivo fuzzing framework, amplifier points—the
locations where fuzzing begins—are typically selected by the de-
veloper. For example, one might choose a parser entry point or a
function known to process external input, which is a reasonable
approach in settings where expert knowledge is available.

But what if we want to automate this step as much as possible?
The invivo paper itself proposes a heuristic solution: select func-

tions whose names contain strings like "parse", assuming they are
likely to process user input. While effective in controlled scenarios,
this method is clearly brittle and not generalizable across arbitrary
targets.

Our key observation is that, regardless of naming conventions or
code structure, all external input must ultimately enter the program
through system calls. Whether data arrives from a file, socket, or
device, it is funneled into the application via standard interfaces
such as read(), recv(), or similar. This makes system calls a natural
choice for amplifier points when applying invivo fuzzing.
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In practice, a single interaction initiated by the agent can trigger
multiple system calls, many of which may not directly process
the input relevant to the functionality under test. For instance, in
response to receiving a network packet, a program might also read
configuration files or perform unrelated I/O as part of its normal
operation. While all of these system calls handle data originating
outside the program, not all of them correspond to the specific
input that the agent was attempting to provide in order to reach a
target function.

One possible strategy would be to selectively amplify all sys-
tem calls handling external input. Provided that invivo fuzzing
constraints on the input are chosen correctly, any discovered vul-
nerability would still reflect a valid issue, since the input originated
from outside the program and flowed through a real execution path.
However, to maintain focus and interpretability in our experiments,
we manually identify the system call most semantically tied to the
agent’s task—for example, the recv() that processes the protocol
packet intended to exercise a particular code path. To do so, we
set breakpoints to input-receiving syscalls, (e.g, read(), recv()) and
run the agent-generated execution. If any of the triggered syscall
receives agent-generated input, it’s chosen as amplifier point. We
also define the corresponding amplifier constraints, which are typ-
ically straightforward from the syscall signature (e.g., in read(fd,
buffer, len), buffer’s size must be smaller than len).

5 Experiments: LLM Agent Effectiveness on
Reachability Bottleneck

Since LLM agents have proven to be powerful tools for software
engineering tasks that are difficult to describe systematically or
algorithmically [27], we first evaluate the capability of our agent
in reaching certain target features in software systems that span
from Linux kernel drivers to network servers. Specifically, we seek
to answer the following research questions:

• RQ.1 (Effectiveness). Can the LLM agent autonomously reach
designated target functions in complex software systems?
• RQ.2 (Directed Feedback vs. Free Exploration). What is the impact
of giving the agent more freedom but less structured information
(via an interactive debugger) versus a constrained set of actions
while providing rich feedback (via code coverage information),
on its ability to reach target functionality?

5.1 Experimental Setup
Selecting target systems. To evaluate the agent’s ability to au-
tonomously reach specific functionality across diverse software
systems, we designed a benchmark consisting of five real-world
targets. Our objective was to select these software systems to reflect
the heterogeneity that makes automated software security testing
particularly challenging. These include:

• Nginx, an HTTP server
• Janus, a general-purpose WebRTC server
• Btrfs, a Linux kernel filesystem driver
• Dnsmasq, a lightweight DNS and DHCP server
• ProFTPD, an FTP server

This selection spans user-space applications, kernel-space dri-
vers, networked daemons, and multimedia backends, emphasiz-
ing differences not only in interface type (e.g., HTTP, system call,
socket-based), but also in the configuration and environment re-
quired to meaningfully interact with them.

Selecting target functionalities. For each target, we selected
five functions as goals for the agent to reach. In the end-to-end
testing methodology described in the previous section, we select
target functions based on their cumulative complexity. While this
metric enables fuzzer access to a broader code region, it also implies
that the chosen functions, being high in the call stack, might be
easier for the agent to reach. However, in RQ1/RQ2, our focus is to
better stress-test the agent reachability capabilities: therefore, we
opted for a metric that did not rule out functions that are potentially
harder to reach. To ensure a fair and principled selection, we chose
the five (5) most complex functions, as measured by cyclomatic
complexity. This is based on the assumption that more complex code
is more likely to contain bugs [16]; hence, reaching such functions
from a clean system state represents a meaningful and realistic
testing goal. As a practical constraint, we limited the selection to
functions reachable through a static call stack no deeper than 10
frames, to ensure that the task remained feasible within a single
run of the agent—each capped to a cost of $10. Finally, a task is
considered successful if, by the end of its interaction loop, the agent
triggered the execution of the specific function designated as the
goal—either in coverage mode or GDB mode.

Coverage and debugger feedback. In order to provide our
LLM Agent with information about the progress towards reaching
a target function, in the default coveragemode, we use the clang cov-
erage instrumentation option (-fsanitize-coverage=trace-pc-
guard,trace-cmp) and llvm-cov coverage profiler. In GDB mode,
we provide access to gdb (12.1) as interactive debugger. We eval-
uate both versions in RQ-2.

Experiment infrastructure. All experiments were conducted
using OpenAI GPT-4 language model [17] with a temperature𝑇 = 0,
chosen to reduce - though not entirely remove [18] - the influence
of stochasticity. The agent was executed inside a Docker container
equipped with a set of pre-installed tools, including gdb (12.1).
It interacted with a virtualized target environment via command
execution on a QEMU virtual machine [3] running Linux kernel
version 6.13.0-rc7, emulated using QEMU version 8.2.2. All exper-
iments were run on a local workstation equipped with 128 cores
and 252 GB of RAM.

5.2 RQ-1. Effectiveness of LLM Agents in
Reaching Target Functions

Figure 3 provides an overview of the agent’s performance for all 25
evaluation task while Table 2 presents a per-task evaluation of agent
effectiveness. For each (target, function) pair, the table indicates
whether the agent successfully reached the target in each mode,
along with the number of calls to LLM API and the corresponding
cost.

Results. In 14 out of the 25 tasks evaluated across the five tar-
get systems, the agent was able to successfully reach the target
functionality. In 10 out of the 14 successful tasks, the agent had
to perform actions beyond mere input generation—such as editing
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configuration files, preparing runtime environments, or launching
dependent services—underscoring that triggering internal function-
ality often requires navigating complex system-level setup steps.
We report further results for RQ-1 in Section 6.2.

Our agent was able to reach the target functionality in themajority
of cases (56%). Out of the successful tasks, again the large majority
(71%) required actions beyond input generation, such as changing
configuration or creating files.

As we can see in Figure 3, while the agent performs particu-
larly well in reaching the targets for nginx, dsnmasq, and proftpd,
it struggles to perform well for janus and btrfs. By analyzing
the corresponding trajectories, we believe that failures in Janus
were mainly due to the interaction modality. The server exposes
an HTTP-based interface, but the agent was instructed to write a
C program to trigger the target functionality. We observed that in
many of the resulting trajectories, the agent spent a disproportion-
ate amount of time iteratively refining a low-level HTTP client in
C, often struggling with implementation details such as parsing the
response received by the server in order to prepare the next request.
For the 4 failures in the Linux kernel driver task, we believe the
challenge is largely due to the inherent complexity of the target
code.

The agent succeeded on user-space targets like nginx and dnsmasq,
but struggled with janus and btrfs—primarily due to suboptimal
interaction modality in the former and the inherent complexity of
kernel-level code in the latter.

Reasoning loops. In some tasks, the agent entered what we
refer to as reasoning loops: repeated iterations of nearly identical
reasoning and code generation, often reusing the same actions and
explanations verbatim. These loops indicate a failure to integrate
negative feedback from the environment and a lack of exploration
of alternative strategies. Once in a loop, the agent tended to exhaust
its interaction budget without making meaningful progress toward
the task objective. This highlights a key limitation in current agent
designs: the inability to reflect on failure and revise plans in a
structured manner.

When the first strategies fail, the LLM agent often lacks the ability
to step back and seek alternative paths.

5.3 RQ-2. Coverage Feedback or Debugger
Effectiveness. Table 2 presents a per-task comparison between the
coverage and gdb execution modes. With access to an interactive
debugger, our agent can successfully reach about the same number
of target functions compared to when given access only to coverage
feedback. However, in three cases it does not recognize the target
function as reached in gdb mode, because it misses the correspond-
ing coverage feedback. Together they reach four functions more
than individually (14 together vs 10 each).

Qualitatively, we observe that the agent’s use of gdb is generally
superficial—typically limited to placing breakpoints on functions
and checking whether they are hit. Notably, the agent never uses
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Figure 3: Number of successfully solved tasks per target.

gdb to inspect variable values or reason about control-flow deci-
sions. Both of these type of insights (executed functions and variable
values in comparison operations) are provided by coverage feed-
back, with much less overhead for the agent. As it seems, while
access to an interactive debugger provides the agent with lower-
level control over the target program, it also introduces greater
freedom and complexity in the decision space. As the results show,
this additional capability does not consistently lead to better out-
comes.

Overhead. In the great majority of the cases, running the agent
in gdb mode leads to a higher number of LLM actions than those
needed in coverage mode. Specifically, gdb mode needs in average
19 more steps than the ones in the corresponding task executed in
coverage mode. This reflects the additional overhead introduced
by gdb: the agent must proactively issue commands to extract
information, whereas in coverage mode, feedback is automatically
provided after each interaction—reducing the need for exploratory
actions.

Coverage feedback not only substitutes for—but often improves
upon—the information gained through debugger interaction.

6 End-to-End: Integration with Invivo Fuzzing
We now evaluate the effectiveness of our end-to-end methodology,
which combines our LLM agent with invivo fuzzing. The goal of this
evaluation is to assess whether executions generated by the agent
can serve as viable starting points for invivo fuzzing, and whether
amplifying these executions leads to improved code coverage and
bug discovery. To this end, we apply our approach to four real-world
software targets and measure both the coverage gains achieved
through amplification and the ability to uncover new, previously
unknown vulnerabilities. Therefore, here we want to answer the
following research question:
• RQ3. Can LLM-generated executions, when combined with
invivo fuzzing, increase coverage and discover previously
unknown vulnerabilities in real-world software?

6.1 Experimental Setup
To evaluate our full methodology, we apply it to four real-world
open-source programs from OSS-Fuzz:
• nginx (HTTP server)
• dnsmasq (DNS/DHCP server)
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• lighttpd (HTTP server)
• mosquitto (MQTT broker [publish/subscribe messaging])

Some of the programs used for evaluation of RQ1/RQ2 could not
be used to test the full methodology, mainly due to limitations in
the current implementation of invivo fuzzing. In particular:

• btrfs, a kernel driver, excluded here because afllive is cur-
rently not implemented in kernel mode. Nonetheless, we
kept btrfs in RQ1/RQ2 to test the agent also on a kernel
component.
• proftpd, a FTP server. It creates a chroot for incoming con-
nections, hindering the communication between fork server
and fuzzer. While this can be manually solved [15], we be-
lieve that a more general solution at a fuzzer engineering
level would be more interesting to study (but out of scope
for this work).
• janus, a WebRTC server, excluded from RQ3 because exper-
imental results for RQ1/RQ2 already showed that the agent
performed poorly on it.

Programs and targets. For each program, we select the 20 func-
tions with the highest cumulative complexity. We chose a large
number of functions (20) to cover the functionality of the system
broadly. The cumulative complexity of a function 𝑓 is computed
as the sum of the cyclomatic complexity of 𝑓 and all functions
transitively called by 𝑓 . This metric is explicitly recommended by
OSS-Fuzz as a way to identify promising targets for fuzz harnesses,
under the intuition that exercising these functions is likely to tran-
sitively cover a significant portion of program logic [11]. The agent
is tasked with reaching these functions autonomously. Whenever a
function is successfully triggered, we replay the execution and start
an invivo fuzzing campaign of 2 hours: we chose this duration to be
long enough for fuzzing to begin demonstrating its effectiveness,
and short enough to allow us to amplify all selected amplifier points.
The amplification points are selected as explained in Section 4.3.
As in the rest of our methodology, the only assumption at the be-
ginning of the experiments is that the target software is installed
on the system with the default configuration, and instrumented for
coverage collection.

6.2 Addressing the Reachability Challenge
Table 3 [Target Functions (reached/total)] augments the results
for RQ-1. As we can see, on average three quarters (75%) of the
target functions can be reached. In Table 4 we list, for each target
program, a set of representative functionalities that were exercised
by the LLM agent, along with the setup actions required to reach
them (e.g., enabling modules, preparing configuration files, launch-
ing dependent services). These functionalities are not exhaustive
but roughly correspond to the features associated with the 20 tar-
get functions selected for amplification, and are intended to help
the reader contextualize the scope and complexity of the agent’s
interactions.

The LLM agent was able to reach a significant fraction of the
selected functions in all targets. These functionalities span a range
of complex behaviors, such as QUIC support in nginx, DHCPv6 in
dnsmasq, and MQTT subscription handling in mosquitto. Impor-
tantly, they required substantial configuration effort that would
traditionally be handled manually.

6.3 Effectiveness: Integrating Invivo Fuzzing
The results are shown in Table 3. In three of four cases, our LLM
agent together with invivo fuzzing achieves significantly more
coverage than the manually generated fuzz drivers available in
OSS-Fuzz. In two cases, the increase in coverage is by an order of
magnitude. Only for mosquitto, which has 23 manually written
fuzz drivers, our agent achieves a lower coverage (7.9k vs 4.5k).

This supports our central intuition: while fuzzing is highly ef-
fective at exploring complex logic once a rich program state is
reached, the LLM agent plays a crucial complementary role by un-
locking those states—interacting with the system and satisfying
preconditions that traditional fuzzers alone fail to handle.

The amplified executions consistently achieve substantially higher
code coverage than the highly curated, manually written set of
fuzz drivers in OSS-fuzz.

The contribution of invivo fuzzing over and above the LLM-
generated execution is demonstrated by the number of coverage-
increasing inputs added to the queue of the invivo fuzzer [Table 3
(#Cov.-incr. Inputs)]. For nginx and dnsmasq, we see several thou-
sand coverage increasing inputs added to the queue (1.6k and 1.5k).
Even for mosquitto, 348 coverage-increasing inputs are discovered.
We note that an invivo-generate execution continues even long after
the amplified function returns. Our results validate the usefulness
of our amplification point identification heuristic, and demonstrates
that fuzzing continues to drive exploration well beyond the agent’s
initial trajectory.

Finally, the invivo amplification phase successfully uncovered a
previously unknown vulnerability in dnsmasq. The out of bounds
read (OOB; information disclosure) was confirmed, reported, and
patched by the maintainers, and CVE number CVE-2025-54318 was
assigned to it.

Our methodology uncovered a previously unknown, real-world
vulnerability in dnsmasq, demonstrating its practical effectiveness.

7 Related Work
LLMs for Vulnerability Discovery. Recent work has explored

the use of LLM-based agents for vulnerability discovery across a
variety of settings. Project Naptime [10] equips an LLM with a rich
interface—including a code browser, debugger, and the ability to
run Python scripts—to interact with a target codebase and search
for memory corruption vulnerabilities. In contrast, BigSleep [9]
focuses on variant analysis: the agent is given a natural language
description of a previously discovered vulnerability and tasked with
finding semantically similar issues in the same codebase. Notably,
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Table 2: Comparison of effectiveness and number of LLM calls in coverage versus GDB modes for userspace targets, with
corresponding API cost. The dagger (✓†) shows where the agent is successful but does not stop the campaign.

Target Function Solved (Cov) Solved (GDB) LLM calls (Cov) LLM calls (GDB)
nginx ngx_http_parse_request_line ✓ ✓ 11 — ($0.52) 14 – ($0.84)
nginx ngx_http_ssi_parse ✓ ✓ 24 – ($1.63) 26 – ($1.94)
nginx ngx_ssl_connection_error ✓ ✕ 26 – ($1.81) 88 – ($10.00)
nginx ngx_resolver_process_a ✕ ✕ 78 – ($10.00) 81 – ($10.00)
nginx ngx_http_write_filter ✓ ✓ 12 – ($0.66) 13 – ($0.80)
dnsmasq dhcp_reply ✓ ✕ 24 – ($1.76) 78 – ($10.00)
dnsmasq answer_auth ✕ ✓ 90 – ($10.00) 78 – ($9.37)
dnsmasq answer_request ✓ ✓ 21 – ($1.49) 26 – ($2.09)
dnsmasq dhcp6_no_relay ✕ ✓ 84 – ($10.00) 77 – ($8.22)
dnsmasq one_opt ✓ ✓† 19 – ($1.21) 92 – ($10.00)
proftpd setup_env ✓ ✕ 40 – ($3.13) 98 – ($10.00)
proftpd resolve_logfmt_id ✕ ✓† 90 – ($10.00) 63 – ($10.00)
proftpd tpl_map_va ✕ ✕ 80 – ($10.00) 87 – ($10.00)
proftpd listfile ✕ ✕ 84 – ($10.00) 85 – ($10.00)
proftpd dolist ✓ ✓† 29 – ($2.49) 98 – ($10.00)
janus janus_videoroom_process_synchronous_request ✕ ✕ 63 – ($10.00) 82 – ($10.00)
janus janus_audiobridge_process_synchronous_request ✕ ✕ 68 – ($10.00) 82 – ($10.00)
janus janus_streaming_process_synchronous_request ✕ ✕ 67 – ($10.00) 78 – ($10.00)
janus janus_process_incoming_admin_request ✓ ✓ 18 – ($2.05) 66 – ($8.37)
janus janus_textroom_handle_incoming_request ✕ ✕ 61 – ($10.00) 57 – ($10.00)

Table 3: Comparison of coverage, input discovery, and bug
detection across four OSS-Fuzz targets.

Metric nginx dnsmasq lighttpd mosquitto

OSS-Fuzz
#Lines Covered 12,619 539 453 7,930
#Fuzz Drivers 1 5 1 23
Driver Size (LoC) 331 1,165 77 n/a

Our agent

Target Functions
14/20 16/20 17/20 14/20

(reached/total)
#Lines Covered 23,644 8,048 5540 4,530
#Cov.-incr. inputs 1685 1,530 861 348
#Bugs Found 0 1 0 0

this approach led to the discovery of a new stack buffer underflow
in SQLite. Another example is Fuzz4All [23], which uses LLMs to
fuzz programs that take structured languages as input, such as
compilers.

Other works found that LLMs have a limited capability to reason
about security-related bugs [21]. For this reason, in our work we
propose using LLMs for a more constrained, yet impactful task:
driving the program into specific internal states where traditional
fuzzing can take over.

Our system is built on top of SWE-agent [26] and EnIGMA [1],
which demonstrated how equipping LLMs with structured inter-
faces and tool access can improve performance in complex software
tasks. While those systems focused on software engineering tasks
and CTF-style vulnerability discovery, we adapt and extend the
agent paradigm to the domain of software reachability—evaluating

whether LLMs can autonomously discover how to interact with
real-world systems in ways that make security analysis possible in
the first place.

Directed Greybox Fuzzing. Directed fuzzing techniques [4, 24]
extend traditional greybox fuzzing by guiding input generation
toward specific target code locations. These approaches augment
coverage feedback with a notion of distance—typically computed
using static analysis over the control-flow or call graph—to pri-
oritize inputs that move the generation of new inputs closer to
the desired target. This guidance is particularly useful in scenarios
such as patch testing or exploit reproduction, where the location of
interest is known in advance.

These techniques are effective once the program is already under
test and a valid interaction path has been established. However,
they assume that the target functionality—understood here as the
coarse-grained region of code relevant to a specific feature or be-
havior—is already reachable via standard input channels such as
command-line arguments or file inputs. There is a substantial de-
pendence on the initial seed inputs which are mutated to create
new inputs guided to be closer to the targets. In practice, however,
many real-world systems require prior configuration, environment
setup, and engagement with the correct high-level interface or
protocol before the desired functionality becomes accessible. As a
result, these approaches often begin one step later in the testing
pipeline. In contrast, our work focuses on the earlier and more
general problem of semantic reachability: discovering how to en-
ter the broad neighborhood of a functionality so that subsequent
testing—directed or otherwise—can be applied effectively.

Automated Fuzz Driver Generation. One possible response
to the limitations of directed fuzzing is to automate the step that
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Table 4: Examples of functionalities reached by the LLM agent and the required setup actions.

Program Functionality Required Setup

nginx QUIC handling Enable Hypertext Transfer Protocol version 3 (HTTP/3) and Quick UDP Internet Connections (QUIC) in
configuration files; serve Transport Layer Security (TLS) certificates; issue a QUIC-compatible request

SSL setup Generate certificates; update configuration; initiate Hypertext Transfer Protocol Secure (HTTPS) request
Upstream connection Define upstream servers; configure proxying; send backend-directed request
UWSGI dispatch Configure (Useful Web Server Gateway Interface) UWSGI module; set up ‘.uwsgi‘ handler; send request to

corresponding endpoint

dnsmasq DHCPv6 parsing Enable Dynamic Host Configuration Protocol version 6 (DHCPv6); configure IPv6 interfaces; simulate
valid DHCPv6 client request

DHCP Enable DHCP service; configure address pool; send crafted DHCP discover packet
DNS query parsing Configure Domain Name Server (DNS) domain rules; simulate query via User Datagram Protocol (UDP)

lighttpd HTTP request parsing Enable HTTP module; send custom request with crafted headers and paths
URL normalization Activate Uniform Resource Locator (URL) rewriting; issue requests with symbolic path components (e.g.,

‘../‘)

mosquitto In-memory DB publish message to broker; terminate broker to trigger write to database (DB); restart broker
Subscribe packet Create valid configuration; send SUBSCRIBE command and wait for ACK

precedes it—namely, the generation of fuzz drivers that interface
with the target code. Several recent approaches have tackled this
challenge, using static or dynamic analysis, sometimes combined
with language models, to synthesize harnesses that invoke target
functions or APIs [2, 12, 13, 25].

Fudge [2] automatically synthesizes fuzz drivers by leveraging a
library consumer to extract valid API usage of a library API. Fuz-
zGen [12] implements a whole system analysis to infer the library’s
interface and synthesizes fuzz drivers accordingly. KernelGPT [25]
focuses on the Linux Kernel, and leverages Large Language Mod-
els to synthesize syscall specifications to enhance kernel fuzzing.
UTopia [13] automatically synthesizes fuzz drivers for open source
libraries from existing unit tests.

However, automated fuzz driver generation faces fundamental
limitations. Most approaches are designed for libraries, assuming
that functionality can be exercised in isolation. This assumption
breaks down when the target code is embedded in a larger execu-
tion context—as is the case for several of our targets, like dnsmasq
and proftpd, where even shallow functionalities show 0% OSS-
Fuzz coverage. Isolating such code risks breaking the semantics
needed to meaningfully trigger it. Moreover, many systems de-
pend on the availability of existing library clients to inform driver
synthesis, which limits applicability to less-used or more complex
components.

In-vivo fuzzing [8] offers a complementary approach by sidestep-
ping the need for explicit fuzz driver generation. Instead of isolating
the target code, it instruments the program at runtime and amplifies
natural executions at selected points, known as amplification points.
This allows to test code in its native execution context, preserv-
ing real-world data flows and environmental state. This technique
still assumes that such execution points can be reached in the first
place—typically through existing user interactions or test work-
loads. The core challenge of how to initially drive execution toward

these points remains unaddressed. This is precisely the problem
we target: discovering how to reach meaningful functionality in
the first place, especially when it requires non-trivial configuration,
protocol engagement, or system-level setup. Our work can thus
be seen as a prerequisite step that enables fuzzing techniques to
operate more effectively.

8 Conclusion
This work recognizes reachability as a central challenge in scaling
automated software security testing to general software systems
and investigates the effectiveness of Large Language Model (LLM)
agents in addressing this issue. It also introduces an end-to-end
methodology that integrates the complementary strengths of LLM
agents and in-vivo fuzzing. While in-vivo fuzzing amplifies real
executions to expose deep program behaviors, solving the reacha-
bility challenge is key to unlocking its effectiveness. Our approach
addresses this challenge by using an LLM agent to interact with
the system, configure the environment, and steer execution toward
specific internal functionality, thereby exposing complex program
states from which fuzzing can operate.

We demonstrate the feasibility and effectiveness of this method-
ology through an extensive evaluation across a wide range of real-
world software targets. Our findings indicate that the LLM agent
can reach the target functionality in most cases, a process that often
involves preparatory steps such as adjusting configurations and
setting up the environment. Once these functionalities are reached,
invivo fuzzing significantly increases coverage and even leads to
the discovery of a previously unknown vulnerability.

Beyond empirical results, this work offers a broader contribution:
a shift in how LLMs are positioned within software security. Rather
than acting as direct vulnerability finders, LLMs can be the enablers
that prepare systems for deeper automated testing.
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Looking forward, at least two research directions appear worth
exploring. First, automating the discovery of invivo fuzzing ampli-
fier points and the corresponding constraints: for example, would
it be beneficial to go beyond amplifying system calls, and be even
more targeted? And in cases where we are not amplifying system
calls, how would we choose the buffer to fuzz? And how would we
automatically infer the corresponding constraints? Second, since
the success in reaching a target is directly verifiable through cover-
age feedback after each interaction, the problem provides a natural
reward signal. Therefore, reinforcement learning approaches might
be used to train agents and specialize them in navigating specific
codebases.
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